Wednesday, September 12, 2012

• TISK Problems 1) Find the slope and *y*-intercept of the line with the equation: 3x + 5y = 272) Simplify: $\frac{5x^2 + 11x + 2}{5x + 1}$

We will have 3 Mental Math questions.

Homework: p. 152 #35-37

§3.4 Proving Lines are Parallel

- Corresponding Angles Converse (Postulate)
 - If two lines are cut by a transversal so that corresponding angles are congruent, then the lines are parallel.
 - If corresponding \measuredangle s are \cong \Rightarrow lines are \parallel .

Theorems

Alternate Interior Angles Converse
 If two lines are cut by a transversal so that alternate interior angles are congruent, then the lines are parallel.
 If Al ∡s are ≅⇒ lines are ||

Proof of Al Angles Converse.

Statements	Reasons
1) ∡1 ≅ ∡2	1) Given
2) ≰1&∡3 are vert. ∡s	2) Assumed
3) ∡1 ≅ ∡3	3) If 2∡s are vert. ∡s ⇒ they're \cong
4) ∡2 ≅ ∡3	4) If $\not A \cong \not A B$ and $\not A B \cong \not A C \Rightarrow \not A A \cong \not A C$
5) $m n $	5) If Corresponding \measuredangle s are $\cong \Rightarrow$ lines are

Theorems

•Consecutive Interior Angles Converse

- If two lines are cut by a transversal so that consecutive interior angles are supplementary, then the lines are parallel.
 - If CI \measuredangle s are supp. \Rightarrow lines are \parallel .

Proof of CI Angles Converse

Statements	Reasons
1) 41&42 are supp.	1) Given
2) ≰1&∡3 are a linear pair	2) Assumed
3) ∡1&∡3 are supp.	3) If 2∡s are a l.p.⇒ they're supp.
4) ∡2 ≅ ∡3	4) If 2∡s are supp. to the same $∠$ ⇒ they're $≅$
5) m n	5) If AI∡s are ≅ ⇒lines are

Theorems

Alternate Exterior Angles Converse
 olf two lines are cut by a transversal so that alternate exterior angles are congruent, then the lines are parallel.
 o If AE ∡s are ≃ ⇒ lines are ||.

Proof of AE Converse

• You will be asked to prove this theorem on a test or a quiz.

Given: $\measuredangle 1 \cong \measuredangle 2$

Prove: $m \parallel n$

Example.

Find the value of x that makes $j \parallel k$.

 $4x^{\circ}$

Using the CI Converse, we know that if CI \measuredangle s are supp., then lines

are ∥.

 $x^{\circ} + 4x^{\circ} = 180^{\circ}$

k

x°

 $5x^{\circ} = 180^{\circ}$ x = 36 Try this proof using the white boards and working with your seat partner. • Given: \$1 and \$4 are supp. & \$1 and \$5 are supp.

• Prove: $j \parallel k$

Statement	Reason

Proof Practice

Homework
p. 152 #35-37
For all proofs, start with a flow proof then write a 2-column proof.